Processed Meat, but Not Unprocessed Red Meat, Is Inversely Associated with Leukocyte Telomere Length in the Strong Heart Family Study.

Publication Type:

Journal Article

Source:

The Journal of nutrition, Volume 146, Issue 10, p.2013-2018 (2016)

Abstract:

BACKGROUND: Telomeres are repetitive nucleotide sequences (TTAGGG) and their associated proteins at the end of eukaryote chromosomes. Telomere length shortens throughout the lifespan with each cell division, and leukocyte telomere length (LTL) is often used as a biomarker of cellular aging. LTL is related to many chronic diseases, including cardiovascular disease and diabetes. However, to our knowledge, the relation between LTL and risk factors for cardiovascular disease and diabetes, such as dietary intake of processed meat and unprocessed red meat, is largely unknown. OBJECTIVE: We examined the associations of processed meat intake and unprocessed red meat intake with LTL. METHODS: This cross-sectional study comprised 2846 American Indians from the Strong Heart Family Study who participated in the 2001-2003 examination. Dietary factors, including past-year consumption of processed meat and unprocessed red meat, were assessed with the use of a 119-item Block Food-Frequency Questionnaire. LTL was measured with the use of quantitative polymerase chain reaction. Generalized estimating equations were used to examine the associations of intake of processed meat and unprocessed red meat with LTL. RESULTS: Consumption of processed meat was negatively associated with LTL after adjustment for age, sex, site, education, smoking, alcohol use, physical activity, and other dietary factors. For every additional daily serving of processed meat, LTL was 0.021 units (telomeric product-to-single-copy gene ratio) shorter (β ± SE = -0.021 ± 0.008, P = 0.009). No association was observed between the intake of unprocessed red meat and LTL (β ± SE = 0.008 ± 0.011, P = 0.46). CONCLUSIONS: In the Strong Heart Family Study, consumption of processed meat, but not unprocessed red meat, was associated with shorter LTL, a potential mediator for several age-related diseases. Further studies are needed to better understand the biological mechanism by which processed meat intake influences cellular aging.