Metabolomic profiling of urine: response to a randomised, controlled feeding study of select fruits and vegetables, and application to an observational study.

Publication Type:

Journal Article


The British journal of nutrition, Volume 110, Issue 10, p.1760-70 (2013)


2013, Center-Authored Paper, May 2013, Prevention Center Core Facility, Proteomics Core Facility, Public Health Sciences Division, Shared Resources, Specimen Processing Core Facility


Metabolomic profiles were used to characterise the effects of consuming a high-phytochemical diet compared with a diet devoid of fruits and vegetables (F&V) in a randomised trial and cross-sectional study. In the trial, 8 h fasting urine from healthy men (n 5) and women (n 5) was collected after a 2-week randomised, controlled trial of two diet periods: a diet rich in cruciferous vegetables, citrus and soya (F&V), and a fruit- and vegetable-free (basal) diet. Among the ions found to differentiate the diets, 176 were putatively annotated with compound identifications, with forty-six supported by MS/MS fragment evidence. Metabolites more abundant in the F&V diet included markers of the dietary intervention (e.g. crucifers, citrus and soya), fatty acids and niacin metabolites. Ions more abundant in the basal diet included riboflavin, several acylcarnitines and amino acid metabolites. In the cross-sectional study, we compared the participants based on the tertiles of crucifers, citrus and soya from 3 d food records (n 36) and FFQ (n 57); intake was separately divided into the tertiles of total fruit and vegetable intake for FFQ. As a group, ions individually differential between the experimental diets differentiated the observational study participants. However, only four ions were significant individually, differentiating the third v. first tertile of crucifer, citrus and soya intake based on 3 d food records. One of these ions was putatively annotated: proline betaine, a marker of citrus consumption. There were no ions significantly distinguishing tertiles by FFQ. The metabolomic assessment of controlled dietary interventions provides a more accurate and stronger characterisation of the diet than observational data.