Improving neutralization potency and breadth by combining broadly reactive HIV-1 antibodies targeting major neutralization epitopes.

Publication Type:

Journal Article

Source:

Journal of virology, Volume 89, Issue 5, p.2659-71 (2015)

Keywords:

Anti-HIV Agents, Antibodies, Neutralizing, Drug Interactions, Epitopes, HIV Antibodies, HIV-1, Humans, Inhibitory Concentration 50, Neutralization Tests

Abstract:

The isolation of broadly neutralizing HIV-1 monoclonal antibodies (MAbs) to distinct epitopes on the viral envelope glycoprotein (Env) provides the potential to use combinations of MAbs for prevention and treatment of HIV-1 infection. Since many of these MAbs have been isolated in the last few years, the potency and breadth of MAb combinations have not been well characterized. In two parallel experiments, we examined the in vitro neutralizing activities of double-, triple-, and quadruple-MAb combinations targeting four distinct epitopes, including the CD4-binding site, the V1V2-glycan region, the V3-glycan supersite, and the gp41 membrane-proximal external region (MPER), using a panel of 125 Env-pseudotyped viruses. All MAb combinations showed substantially improved neutralization breadth compared to the corresponding single MAbs, while the neutralization potency of individual MAbs was maintained. At a 50% inhibitory concentration (IC50) cutoff of 1 μg/ml per antibody, double-MAb combinations neutralized 89 to 98% of viruses, and triple combinations neutralized 98 to 100%. Overall, the improvement of neutralization breadth was closely predicted by an additive-effect model and explained by complementary neutralization profiles of antibodies recognizing distinct epitopes. Subtle but consistent favorable interactions were observed in some MAb combinations, whereas less favorable interactions were observed on a small subset of viruses that are highly sensitive to V3-glycan MAbs. These data demonstrate favorable in vitro combinations of broadly neutralizing HIV-1 MAbs and suggest that such combinations could have utility for HIV-1 prevention and treatment.