Identification and visualization of multidimensional antigen-specific T-cell populations in polychromatic cytometry data.

Publication Type:

Journal Article

Source:

Cytometry. Part A : the journal of the International Society for Analytical Cytology (2015)

Abstract:

An important aspect of immune monitoring for vaccine development, clinical trials, and research is the detection, measurement, and comparison of antigen-specific T-cells from subject samples under different conditions. Antigen-specific T-cells compose a very small fraction of total T-cells. Developments in cytometry technology over the past five years have enabled the measurement of single-cells in a multivariate and high-throughput manner. This growth in both dimensionality and quantity of data continues to pose a challenge for effective identification and visualization of rare cell subsets, such as antigen-specific T-cells. Dimension reduction and feature extraction play pivotal role in both identifying and visualizing cell populations of interest in large, multi-dimensional cytometry datasets. However, the automated identification and visualization of rare, high-dimensional cell subsets remains challenging. Here we demonstrate how a systematic and integrated approach combining targeted feature extraction with dimension reduction can be used to identify and visualize biological differences in rare, antigen-specific cell populations. By using OpenCyto to perform semi-automated gating and features extraction of flow cytometry data, followed by dimensionality reduction with t-SNE we are able to identify polyfunctional subpopulations of antigen-specific T-cells and visualize treatment-specific differences between them. © 2015 International Society for Advancement of Cytometry.