Hematopoietic cell transplantation provides an immune-tolerant platform for myoblast transplantation in dystrophic dogs.

Publication Type:

Journal Article


Molecular therapy : the journal of the American Society of Gene Therapy, Volume 16, Issue 7, p.1340-6 (2008)


2008, Animals, Center-Authored Paper, Clinical Research Division, Comparative Medicine Core Facility, Dogs, Experimental Histopathology Core Facility, hematopoietic stem cell transplantation, Human Biology Division, Immune Tolerance, Immunosuppression, Muscular Dystrophy, Duchenne, MYOBLASTS, Shared Resources


Duchenne Muscular Dystrophy (DMD) is the most common and severe form of muscular dystrophy in humans. The goal of myogenic stem cell transplant therapy for DMD is to increase dystrophin expression in existing muscle fibers and to provide a source of stem cells for future muscle generation. Although syngeneic myogenic stem cell transplants have been successful in mice, allogeneic transplants of myogenic stem cells were ineffective in several human trials. To determine whether allogeneic muscle progenitor cells can be successfully transplanted in an immune-tolerant recipient, we induced immune tolerance in two DMD-affected (cxmd) dogs through hematopoietic cell transplantation (HCT). Injection of freshly isolated muscle-derived cells from the HCT donor into either fully or partially chimeric xmd recipients restored dystrophin expression up to 6.48% of wild-type levels, reduced the number of centrally located nuclei, and improved muscle structure. Dystrophin expression was maintained for at least 24 weeks. Taken together, these data indicate that immune tolerance to donor myoblasts provides an important platform from which to further improve myoblast transplantation, with the goal of restoring dystrophin expression to patients with DMD.