An essential cell cycle regulation gene causes hybrid inviability in Drosophila.
Publication Type:
Journal ArticleSource:
Science (New York, N.Y.), Volume 350, Issue 6267, p.1552-5 (2015)Keywords:
Bioinformatics Core Facility, Genomics Core FacilityAbstract:
Speciation, the process by which new biological species arise, involves the evolution of reproductive barriers, such as hybrid sterility or inviability between populations. However, identifying hybrid incompatibility genes remains a key obstacle in understanding the molecular basis of reproductive isolation. We devised a genomic screen, which identified a cell cycle-regulation gene as the cause of male inviability in hybrids resulting from a cross between Drosophila melanogaster and D. simulans. Ablation of the D. simulans allele of this gene is sufficient to rescue the adult viability of hybrid males. This dominantly acting cell cycle regulator causes mitotic arrest and, thereby, inviability of male hybrid larvae. Our genomic method provides a facile means to accelerate the identification of hybrid incompatibility genes in other model and nonmodel systems.
Doing Business with Arnold Library
Weintraub Building, B1-010
(206) 667-4314
library@fredhutch.org
More About Arnold Library
Quick Links
- ILLiad/ILL Form
- Journals List
- Ovid - Medline
- Web of Science
- Pubmed
- Libguides
- Library Catalog
- Researcher Profiles
- Library Affiliations & Memberships
- Fred Hutch Papers (Intranet)