DNA looping facilitates targeting of a chromatin remodeling enzyme.

Publication Type:

Journal Article


Molecular cell, Volume 50, Issue 1, p.93-103 (2013)


2013, April 2013, Basic Sciences Division, Center-Authored Paper


ATP-dependent chromatin remodeling enzymes are highly abundant and play pivotal roles regulating DNA-dependent processes. The mechanisms by which they are targeted to specific loci have not been well understood on a genome-wide scale. Here, we present evidence that a major targeting mechanism for the Isw2 chromatin remodeling enzyme to specific genomic loci is through sequence-specific transcription factor (TF)-dependent recruitment. Unexpectedly, Isw2 is recruited in a TF-dependent fashion to a large number of loci without TF binding sites. Using the 3C assay, we show that Isw2 can be targeted by Ume6- and TFIIB-dependent DNA looping. These results identify DNA looping as a mechanism for the recruitment of a chromatin remodeling enzyme and define a function for DNA looping. We also present evidence suggesting that Ume6-dependent DNA looping is involved in chromatin remodeling and transcriptional repression, revealing a mechanism by which the three-dimensional folding of chromatin affects DNA-dependent processes.