Cell-Intrinsic Abrogation of TGF-β Signaling Delays but Does Not Prevent Dysfunction of Self/Tumor-Specific CD8 T Cells in a Murine Model of Autochthonous Prostate Cancer.

Publication Type:

Journal Article


Journal of immunology (Baltimore, Md. : 1950), Volume 189, Issue 8, p.3936-46 (2012)


Clinical Research Division, October 2012


Adoptive T cell therapy (ACT) for the treatment of established cancers is actively being pursued in clinical trials. However, poor in vivo persistence and maintenance of antitumor activity of transferred T cells remain major problems. TGF-β is a potent immunosuppressive cytokine that is often expressed at high levels within the tumor microenvironment, potentially limiting T cell-mediated antitumor activity. In this study, we used a model of autochthonous murine prostate cancer to evaluate the effect of cell-intrinsic abrogation of TGF-β signaling in self/tumor-specific CD8 T cells used in ACT to target the tumor in situ. We found that persistence and antitumor activity of adoptively transferred effector T cells deficient in TGF-β signaling were significantly improved in the cancerous prostate. However, over time, despite persistence in peripheral lymphoid organs, the numbers of transferred cells in the prostate decreased and the residual prostate-infiltrating T cells were no longer functional. These findings reveal that TGF-β negatively regulates the accumulation and effector function of transferred self/tumor-specific CD8 T cells and highlight that, when targeting a tumor Ag that is also expressed as a self-protein, additional substantive obstacles are operative within the tumor microenvironment, potentially hampering the success of ACT for solid tumors.