Shelly Heimfeld

Appointments and Affiliations

Fred Hutchinson Cancer Research Center
Clinical Research Division
Full Member
Fred Hutchinson Cancer Research Center
Clinical Research Division
Cellular Therapy Laboratory and cGMP Cell Processing Facility
Scientific Director
Professional Headshot of Shelly  Heimfeld

Mailing Address

Fred Hutchinson Cancer Research Center
1100 Fairview Ave. North
P.O. Box 19024
MS D5-100
Seattle, Washington 98109-1024
United States


Phone: (206) 667-4004
Fax: (206) 667-4937


Ph.D., University of California, Irvine, Cell Differentiation, 1983.

Research Interests

The overall objective of the Core Center for Excellence in Hematology (CCEH) is to support investigators by providing access to unique sets of reagents, resources, technical expertise and equipment that are either unavailable or cost-prohibitive at the Center. Cell Processing Core B offers the ability to obtain large quantities of specific enriched cell populations, such cells are being used to help define the molecular and functional properties that make hematopoietic stem cells unique, and to elucidate the role of other blood cell populations in engraftment, disease control, and graft-versus-host complications. In my role as Scientific Director of the Center's Clinical Cell Therapy Laboratory and the cGMP Therapeutic Manufacturing Facility, a position I have held for over 10 years, I have a very strong appreciation for quality control, quality assurance, and compliance with regulations. I also direct several research based cores, ranging from specimen repositories to multi-parameter flow cytometry to large-scale cell processing. I have been using/developing various cell sorting techniques for over 25 years, starting as a graduate student at UC Irvine through post-doctoral training at Stanford with Irv Weissman to high-speed FACS at SyStemix to the first FDA-approved CD34 selection device at CellPro. Those previous experiences, along with my current research and clinical responsibilities, have emphasized the need for teamwork, collaboration, and cooperation to help advance scientific understanding. The CCEH model continues to build on those same values by providing high quality support services to the research community. Under my leadership as Core Director, the CCEH Cell Processing core has experienced tremendous growth, supported investigators from all over the country, and contributed to a very extensive number of publications. I look forward to continuing to provide such services and be able to assist researchers in their basic science, pre-clinical, and therapeutic studies.

Additional Experience

1999-2015 Co-Principal Investigator, NIH P30 Grant (DK56465), Core Center of Excellence in Molecular Hematology, Fred Hutchinson Cancer Research Center, Seattle, WA.

2000-2011 Director, Sub-project Core D, NIH P50 Grant (HL54881), Biology of Hematopoietic Stem Cells, Fred Hutchinson Cancer Research Center, Seattle, WA.

2000-2012 Director, Sub-project Core E, NIH PO1 Grant (CA18029), Adult Leukemia Research Center, Fred Hutchinson Cancer Research Center, Seattle, WA.

2000-2015 Director,Sub-project Core B, NIH P30 Grant (CA15704), Cancer Center Support, Fred Hutchinson Cancer Research Center, Seattle, WA.

Future Research

I have a broad range of research interests, with a particular focus on the development of improved therapeutic strategies using various human stem cell populations. My long-term goals for this area are to identify better markers for the characterization of stem and progenitor cells, to improve the isolation technologies for enriching these types of cells, and to develop ex-vivo manipulation strategies that can enhance the therapeutic potential of these cells.

Another primary research area will involve studying human dendritic cell populations. I am interested in exploring the differential mobilization of distinct dendritic precursor subsets in response to specific manipulations such as cytokine treatment, the identification of unique markers to enrich those types of cells, and the ex-vivo generation of dendritic cells from precursor populations. These dendritic cells will then be manipulated to either enhance specific immune responses (e.g. anti-tumor or anti-viral activity) or dampen down inappropriate reactions (e.g. GVHD, automimmune disease, tolerance induction).

All of these research goals have a therapeutic clinical focus, and will ultimately involve the 'engineering' of patient grafts to investigate the role of specific cell populations in transplantation outcomes. This ties in directly with the Center's Cellular Therapy Laboratory and the new cGMP facility, and the role these units will play in manipulating blood and bone marrow components for the treatment of patients. It has become clear that the FDA is becoming more involved in overseeing this area of graft engineering and intends to tightly regulate this field. Thus, another goal of mine is to become very proficient in GLP, GTP and GMP regulations, both to help the Center moveforward in the development of its therapeutic strategies, and to facilitate the interactions with the FDA in this rapidly evolving area.


(Reading, Writing, Speaking)

English: (Fluent, Fluent, Fluent)


American Association for the Advancement of Science
American Society for Blood and Bone Marrow Transplantation
American Society for Blood and Bone Marrow Transplantations
American Society for Hematology
American Society of Gene Therapy
International Society for Cellular Therapy
International Society for Experimental Hematology
International Society for Hematotherapy and Graft Engineering
International Society for Stem Cell Research

Honors and Awards

1986-1988, Postdoctoral Fellowship, Leukemia Society, Stanford University

Previous Positions

2002-2009, Associate Member, Fred Hutchinson Cancer Research Center, Clinical Research Division
2002-2009, Scientific Director, Fred Hutchinson Cancer Research Center, Therapeutic Manufacturing
2002-2009, Staff Scientist and Director, Fred Hutchinson Cancer Research Center, Cellular Therapy Laboratory
1991-1998, Biological Research Director, CellPro, Inc., Research
1990-1991, Visiting Scientist, DNAX Research Institute, Department of Immunology
1988-1990, Co-Principal Investigator, SyStemix, Palo Alto, CA


Methods and Devises for Culturing Human Hematopoietic Cells and Their Precursors, Patent Number: 5635387, 1997, Self-owned, United States of America.
Apparatus and Method for Particle Separation in a Closed Field, Patent Number: 5672481, 1997, Self-owned, United States of America.
Homogeneous Mammalian Hematopoietic Stem Cell Composition, Patent Number: 5087570, 1992, Self-owned, United States of America.


  • NHLBI U01 HL099993: Controlling Hematopoietic Lineage Commitment for ESC to Platelets, 2011 to 2015.
  • NIDDK: P30 DK56465 Core Center of Excellence in Hematology Core B, 2010 to 2015.
  • NCI P01 CA18029: Adult Leukemia Center Core E, 2007 to 2012.


Recent Publications

Newell LF, Milano F, Nicoud IB, Pereira S, Gooley TA, Heimfeld S, Delaney C.  2012.  Early CD3 Peripheral Blood Chimerism Predicts the Long-Term Engrafting Unit Following Myeloablative Double-Cord Blood Transplantation.. Biology of blood and marrow transplantation : journal of the American Society for Blood and Marrow Transplantation. 18(8):1243-9. Abstract

Coming Soon: New Profiles System!

In preparation for the launch of our new profiles system, we are freezing updates to these profiles. If you have any questions, please email

Researcher Profiles


Related Websites


Scientific Divisions